PRODUCT INFORMATION DYNASPHER SA10H-WT

GEL STRONG ANION TYPE I

WATER TREATMENT SOLUTION

DESCRIPTION

DYNASPHER SA10H-WT is a standard gel strong base type I with styrene-DVB copolymer matrix and quaternary ammonium group supplied in OH⁻ form, redy to use.. It shows excellent physical and chemical properties, high operating capacity, lower pressure drop, well physical and chemical stability. It has the ability to achieve low residual silica levels. DYNASPHER SA1OH-WT shows high regenerative efficiency. On mixed bed the separation of cation and anion resin is very easy and it reduce the possibility of contamination of cation and anion.

SYSTEM DESIGN

Co - current / Counter current / Floating bed / Blocked bed / Layered bed / Mixed bed

PRINCIPAL APPLICATIONS


- Water demineralization
- Condensate
- **Pharmaceutical**
- Metallurgical

REGULATORY

- F.D.A. CFR 21 173.25
- Codes Alimentarius Inventory of Processing Aids – CAC/MISC3
- European Resolution AP (97) 1 regarding the TOC (Total Organic Carbon) realeased according AFNOR method (method T90 -601)

TYPICAL PACKAGING

- 1 ft³ Sack
- 25 It Sack
- 5 ft³ Drum (Fiber)
- 1 m³ Supersack
- 42 ft³ Supersack

Via Brofferio 1 - 20158 MILANO - ITALY

Phone +39 (02) 84573272

Consulting Firm RFP SRLS

PRODUCT INFORMATION DYNASPHER SA10H-WT GEL STRON ANION TYPE I

TYPICAL CHARAPTERISTICS

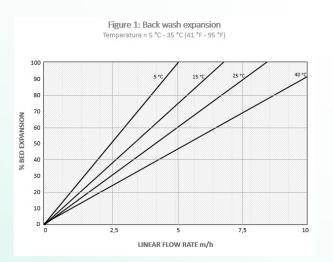
PHYSICAL CHARAPTERISTICS	
Copolymer	Styrene-divinylbenzene
Matrix	Gelulare
Туре	Strong anion type I
Functional Group	Trimethylamine
Physical Form	Light yellow translucent spherical beads
CHEMICAL CHARAPTERISTICS	
Ionic Form as Shipped	OH⁻
Total Exchange Capacity	≥ 1.3 eq/lt (Cl⁻form)
Water Retention Capacity	50.0 - 60.0 % (Cl ⁻ form)
PARTICLE SIZE	
Particle size range	0.425 - 1.18 mm
Uniformity Coefficient	≤ 1.5
< 300 μm	≤ 0.1 %
> 1180 µm	≤ 1.0 %
STABILITY	
Whole Uncracked Beads	≥ 98 %
Swelling	OH⁻→ Cl⁻ - 20% max
DENSITY	
Particle Density	1.060 - 1.100 g / ml
Shipping Weight	680 - 740 g / lt
For additional size in formation, please refer to the	our Technical Dept.

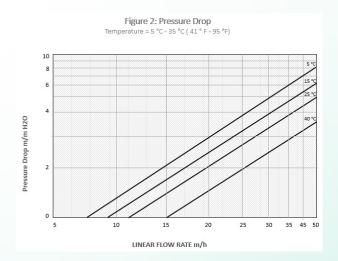
SUGGESTED OPERATING CONDICTIONS

Termal stability	60 °C max Cl⁻ form – 80 °C max	OH ⁻ form
Chemical stability	1 - 14	
Service Cycle	1 - 14	
Minimum bed depth	800 mm	0

For additional praticle size information regarding recommended minimum bed depth, operating conditions, and regeneration conditions for Layered or Mixed bed, please refer to our tecnical dept.

Via Brofferio 1 - 20158 MILANO - ITALY Phone +39 (02) 84573272


PRODUCT INFORMATION DYNASPHER SA10H-WT GEL STRONG ANION TYPE I



HYDRAULIC CHARACTERISTICS

Estimated bed expansion of DYNASPHER SA1OH-WT as a function of backwash flowrate and temperature is show in figure 1.

Estimated pressure drop for DYNASPHER SA10H-WT as a function of service flowrate and temperature is show in figure 2. These pressure drop expectations are valid at the start of the service run with clean water and well – classified bed.

CUSTOMER NOTICE

STORAGE

It is recommended to store ion exchange resins at temperatures above the freezing point of water under roof in dry conditions whithout exposure to direct sunlight. If resin should become frozen, it should not be mechanically handled and left to thaw out gradually at ambient temperature. It must be completely thawed before handling or use. No attempt should be made to accelerate the thawing process.

DISPOSAL

In the European Community Ion exchange resins have to be disposed, according to the European waste nomenclature which can be accessed on the internet – site of the European Union.

TOXICITY

The safety data sheet must be observed. It contains additional data on product description, transport, storage, handling, safety and ecology.

WARNING

Oxidizing agents such as nitric acid attack organic ion exchange resins under certain conditions. This could lead to anything from slight resin degradation to a violent exothermic reaction (explosion). Before using strong oxidizing agents, consult sources knowledgeable in handling such materials.